| Proposed Amendment to the Water Quality Control Plan – Los Angeles Region to Incorporate a                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Maximum Daily Load for Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs), Sediment Toxicity, Polycyclic Aromatic Hydrocarbons (PAHs), and Metals for Colorado Lagoon |
| Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on October 1, 2009                                                                       |
| Amendments                                                                                                                                                                                |
| Table of Contents Add:                                                                                                                                                                    |
| Chapter 7. Total Maximum Daily Loads (TMDLs)                                                                                                                                              |
| 7- 30 Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL                                                                                                       |
| List of Figures, Tables, and Inserts Add:                                                                                                                                                 |
| Chapter 7. Total Maximum Daily Loads (TMDLs) Tables                                                                                                                                       |
| 7-30 Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL                                                                                                        |
| 7-30.1. Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL: Elements                                                                                           |
| 7-30.2. Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL: Implementation Schedule                                                                            |
| Chapter 7. Total Maximum Daily Loads (TMDLs) Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL                                                                |
| This TMDL was adopted by:                                                                                                                                                                 |
| The Regional Water Quality Control Board on October 1, 2009.                                                                                                                              |
| This TMDL was approved by:                                                                                                                                                                |
| The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date]. The U.S. Environmental Protection Agency on [Insert date].                   |
| This TMDL is effective on [Insert date].                                                                                                                                                  |
| The elements of the TMDL are presented in Table 7-30.1 and the Implementation Plan in Table                                                                                               |

The elements of the TMDL are presented in Table 7-30.1 and the Implementation Plan in Table

7-30.2

Table 7-30.1. Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL: Elements

| TMDL Element         | Regulatory Provisions                                                                                                                                                                                                                                        |    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Problem<br>Statement | Colorado Lagoon is identified on the 1998, 2002, and 2006 Clean Water Act Section 303(d) lists of water-quality limited segments as impaired due to elevated levels of OC pesticides, PCBs, sediment toxicity, PAHs, and metals in fish tissue and sediment. | Γ  |
|                      | Applicable fish tissue, sediment, and water quality objectives for this TMDL are narrative objectives for chemical constituents, bioaccumulation, pesticides, and toxicity; and numeric objectives for metals and organic compounds.                         | E  |
|                      | The beneficial uses of Colorado Lagoon include water contact recreation (REC-1) and non-contact water recreation (REC-2), commercial and sport fishing (COMM), warm freshwater habitat (WARM), wildlife habitat (WILD), and shellfish harvesting (SHELL).    | ΝT |
|                      | The goal of this TMDL is to protect and restore fish tissue and sediment quality in Colorado Lagoon by controlling the contaminated sediment loading and accumulation of contaminated sediment in the lagoon.                                                | N  |

 $\prod$ 

A

Γ

V

E

| TMDL Element    | Regulatory Provisions                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Numeric Targets | sediment; DDT, Dield<br>sediment. In order to<br>targets are selected. T<br>Lagoon OC Pesticides                        | rin, and PCBs in fish ti<br>address these listings, v<br>The following table provis, PCBs, Sediment Toxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssue; and chlordane is vater column, fish tis vides the numeric targetty, PAHs, and Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sue and sediment gets for the Colorado                                                                   |  |  |
|                 | Constituents                                                                                                            | Water Quality Target <sup>1</sup> (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fish Tissue Target <sup>2</sup> (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERL Sediment Target <sup>3</sup> (ug/dry Kg)                                                             |  |  |
|                 | Chlordane                                                                                                               | 0.00059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                                                                                     |  |  |
|                 | Total DDT                                                                                                               | 0.00059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.58                                                                                                     |  |  |
|                 | Dieldrin                                                                                                                | 0.00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                     |  |  |
|                 | PCBs                                                                                                                    | $0.00007^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.60 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.70                                                                                                    |  |  |
|                 | Total PAHs <sup>6</sup>                                                                                                 | $0.0088^{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,022.00                                                                                                 |  |  |
|                 | Total LPAHs <sup>8</sup>                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 552.00                                                                                                   |  |  |
|                 | Total HPAHs <sup>9</sup>                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,700.00                                                                                                 |  |  |
|                 | Lead                                                                                                                    | 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46,700.00                                                                                                |  |  |
|                 | Zinc                                                                                                                    | 81.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150,000.00                                                                                               |  |  |
| Source Analysis | Lagoon are urban rund<br>sewer systems (MS4s)<br>Colorado Lagoon wate<br>urban dry weather run<br>major storm sewer tru | OC pesticides, PCBs, Paper and stormwater discount and California Department of the California Department of the California Lagoor and Lagoor a | harges from the mun<br>ment of Transportation<br>ve sub-basins that dien. Each of the sub-basins<br>appurtenances that company the sub-basins the sub-basins that company the sub-b | icipal separate storm on (Caltrans). The scharge stormwater and sins is served by a ollect and transport |  |  |
|                 | Discharges to Col<br>operated by the Lo<br>discharging into the                                                         | orado Lagoon via a 63-<br>os Angeles County Floo<br>ne north part of the wes<br>. Sub-basin A contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | od Control District (F<br>t arm. The drainage p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project 452 Drain)                                                                                       |  |  |

<sup>&</sup>lt;sup>1</sup> The California Toxic Rule (CTR) water quality criteria for consumption of organisms only are applied as the numeric targets for Chlordane, total DDT, and Dieldrin for protection of human health. The Basin Plan objective for PCBs is applied as the numeric target to protect human health. CTR human health criteria were not established for PAHs, so the California Ocean Plan criterion for water is applied as the numeric target for PAHs. The CTR aquatic life criteria for saltwater are applied as the numeric targets for protection of aquatic life for lead and zinc.

- 3 -

<sup>&</sup>lt;sup>2</sup> Office of Environmental Health Hazard Assessment (OEHHA) Fish Contaminant Goals are applied as numeric targets for Chlordane, DDTs, Dieldrin, and PCBs. The U.S. Environmental Protection Agency (USEPA) screening value is applied as the numeric target for total PAHs.

<sup>&</sup>lt;sup>3</sup> Effect Range Low (ERL) sediment criteria from National Oceanic and Atmospheric Administration (NOAA) Sediment Quality Guidelines are applied as numeric targets.

<sup>&</sup>lt;sup>4</sup> PCBs in water are measured as the sum of seven Aroclors.

<sup>&</sup>lt;sup>5</sup> PCBs in fish tissue and sediment are measured as sum of all congeners.

<sup>&</sup>lt;sup>6</sup> PAHs: Polycyclic aromatic hydrocarbons (sum of acenaphthylene, anthracene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluorene, indeno(1,2,3-c,d)pyrene, phenanthrene, and pyrene).

California Ocean Plan water quality objectives for human health protection (thirty-day average, fish consumption only).

<sup>&</sup>lt;sup>8</sup> LPAHs: Low molecular weight PAHs.

<sup>&</sup>lt;sup>9</sup> HPAHs: High molecular weight PAHs.

| TMDL Element     | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Anaheim Street and the northern part of Redondo Avenue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | Sub-basin B.  Discharges to Colorado Lagoon via a 54-inch reinforced concrete pipe (Line I Storm Drain) discharging into the north part of the north arm. The drainage pattern is generally to the south and west. Sub-basin B is predominately park/golf course open space with some residential areas on the north east corner.                                                                                                                                                                                                                                                                            |
|                  | Sub-basin C.  Discharges to Colorado Lagoon via a 48-inch reinforced concrete pipe (Line K Storm Drain) discharging into the mid-point of the north arm. The drainage pattern is generally to the south and west. Sub-basin C is almost entirely residential with a few commercial activities at the eastern boundary.                                                                                                                                                                                                                                                                                       |
|                  | Sub-basin D.  Discharges to Colorado Lagoon via a 24-inch reinforced concrete pipe (Line M Storm Drain) discharging into the south part of the west arm. The drainage pattern is generally to the north and east. Sub-basin D is almost entirely residential with schools and other public facilities.                                                                                                                                                                                                                                                                                                       |
|                  | Sub-basin E.  Discharges to Colorado Lagoon via a 48-inch reinforced concrete pipe (Termino Avenue Drain) discharging into the west arm. The drainage pattern is generally to the south and east. Sub-basin E is mainly residential with commercial activities located along 7th Street, Coronado and Redondo Avenues to the west, and public facilities to the north.                                                                                                                                                                                                                                       |
|                  | Several other smaller storm drains serve the areas immediately adjacent to the lagoon. These smaller storm drains contribute small amounts of contaminants relative to the five sub-basin discharges described above.                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Non-point Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Sediment loading from non-point sources to Colorado Lagoon is mainly runoff from urban, recreational park areas including two golf courses and adjacent park areas, a right-of-way greenbelt, and the picnic and park areas surrounding Colorado Lagoon, and atmospheric deposition.                                                                                                                                                                                                                                                                                                                         |
| Linkage Analysis | This TMDL analysis makes a simplifying assumption that the relationship between OC pesticides and PCBs concentrations in fish tissue and sediments is linear, with the slope of the line being the overall sediment–organism bioaccumulation factor (BAF).                                                                                                                                                                                                                                                                                                                                                   |
|                  | The impairing contaminants in sediment are associated with fine-grained particles that are primarily delivered to the sediments through suspended solids in stormwater and urban runoff. It is expected that reductions in loadings of these pollutants will lead to reductions in sediment concentrations over time. The existing contaminants in surface sediments will be removed by dredging operations and reduced as sediments are scoured during storms. For the legacy pollutants (chlordane and PCBs), some losses will also occur through the slow decay and breakdown of these organic compounds. |

| Concentrations in sediments. Attenual ranslate to reduction the linkage analysis agoon water and sended was selected Colorado Lagoon. To concentrations in the dentify waste load lecisions for Colorado Lagoon.  Sediment Waste L.  Mass-based WLAs  Mass-based WLAs  Mass-based WLAs  Colorado Lagoon City of Long Boto the lagoon are assigned to the achieving the Waste Colorado Lagoon. | tion of pollutations in fish tiss is focuses on ediment respond to simulate so This model essue receiving we allocations to ado Lagoon. imulate the dynamical to ado Allocation of MS4 Discounts and allocation is located of each and lander under the juricity of Long | ant concentrates and contaminates the relationshonse. The Environment of Environment of Stimates the movater to evaluate support water to evaluate the environment of | tion levels in some levels.  ip between sowironmental Figs and transponetals, PAHs, ate potential mer and sedimentic, water qualication between the City of Loistrict, and the City of Loistrict of Lois | burce contributed Dynamics of the lister PCBs, and Enanagement and quality maity, and seding Marine State Charges:  Including the Caltrans are to the lagoordictional boursing Beach, the cong Beach, the cong Beach, the cong Caltrans and Caltrans are to the lagoordictional boursing that current page 1869.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | expected to putions and in- ics Code (EFD ed pollutants in DDT scenarios and anagement iment transpor dium and e City of Long e allocated to t n. Because undaries of the rrently dischar he WLAs are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| agoon water and sended was selected Colorado Lagoon. To concentrations in the dentify waste load lecisions for Colorado Lagoon.  Sediment Waste L.  Mass-based WLAs  Mass-based WLAs  Mass-based wa Beach, Los Ang five major storr Colorado Lagoon City of Long Be to the lagoon ar assigned to the achieving the W                                                                          | ediment respond to simulate so This model est the receiving we allocations to ado Lagoon. In the dy Load Allocation of MS4 Discussive Ioad allocation of the dynamic Ioad allocation is located of each and land the under the juricity of Long                          | onse. The Environment of the Environment of the Environment of Stimates the movater to evaluate support water Hydrodynam ynamic interactions (WLAs) charges  ations for MS Flood Controlls that current completely will areas service urisdiction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vironmental F gs and transponetals, PAHs, ate potential ner and sedime ic, water qual ction between  for MS4 Disc d4 permittees if l District, and tly discharge ithin the jurisc ed by storm dr the City of Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | luid Dynamint of the listed PCBs, and Inanagement of the listed part of the listed part of the lagoor dictional bourains that curong Beach, the lagoon of th | ics Code (EFD ed pollutants in DDT scenarios and anagement iment transpordium and e City of Long e allocated to the allocated to the consecundaries of the trently discharate wull are the WLAs are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dentify waste load lecisions for Colora vas developed to si Colorado Lagoon.  Sediment Waste L.  Mass-based WLAs  Mass-based WLAs  Mass-based wa Beach, Los Ang five major storr Colorado Lagoo City of Long Be to the lagoon ar assigned to the achieving the W                                                                                                                              | allocations to ado Lagoon. imulate the dy Load Allocation of MS4 Discussive load allocated of the death and land on is located of each and land on the under the juricity of Long                                                                                        | ons (WLAs) charges ations for MS Flood Contro lls that curren completely will areas service urisdiction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er and sedimentic, water qualities, water qualities of the MS4 Discourse of the permittees in the purise of the City of Los of  | charges:  Caltrans are to the lagoor dictional bourains that curong Beach, the lagoon of the lagoon dictional bourains that curong Beach, the lagoon of the lagoon dictional bourains that curong Beach, the lagoon of the lagoon dictional bourains that curong Beach, the lagoon of the lagoon dictional bourains that curong Beach, the lagoon dictional bourains the | anagement iment transpor dium and  e City of Long e allocated to the image and the wlas are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t he T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mass-based WLAs  Mass-based WLAs  Mass-based wa Beach, Los Ang five major storr Colorado Lagoo City of Long Be to the lagoon ar assigned to the achieving the W                                                                                                                                                                                                                               | ste load alloc<br>geles County<br>n drain outfal<br>on is located o<br>each and land<br>re under the ju<br>City of Long                                                                                                                                                  | ations for MS Flood Contro lls that curren completely will areas service urisdiction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 permittees in a particular of the permittees in a particular of the permittees in the permittees in a particular of the City of Lorenza in the City of City of Lorenza in the City of Cit | including the Caltrans are to the lagoor dictional bourains that curong Beach, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e allocated to t<br>n. Because<br>undaries of the<br>rrently dischar<br>he WLAs are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mass-based wa<br>Beach, Los Ang<br>five major storr<br>Colorado Lagoo<br>City of Long Bo<br>to the lagoon ar<br>assigned to the<br>achieving the W                                                                                                                                                                                                                                            | ste load alloc<br>geles County<br>m drain outfal<br>on is located of<br>each and land<br>re under the ju<br>City of Long                                                                                                                                                 | ations for MS<br>Flood Contro<br>Ils that curren<br>completely will<br>areas service<br>urisdiction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I District, and<br>tly discharge<br>ithin the jurise<br>ed by storm dr<br>the City of Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caltrans are to the lagoor dictional bourains that curong Beach, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e allocated to t<br>n. Because<br>undaries of the<br>rrently dischar<br>he WLAs are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Beach, Los Ang<br>five major storr<br>Colorado Lagoo<br>City of Long Be<br>to the lagoon ar<br>assigned to the<br>achieving the W                                                                                                                                                                                                                                                             | geles County<br>in drain outfal<br>on is located of<br>each and land<br>re under the ju<br>City of Long                                                                                                                                                                  | Flood Contro<br>lls that curren<br>completely will<br>areas service<br>urisdiction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I District, and<br>tly discharge<br>ithin the jurise<br>ed by storm dr<br>the City of Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caltrans are to the lagoor dictional bourains that curong Beach, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e allocated to t<br>n. Because<br>undaries of the<br>rrently dischar<br>he WLAs are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | he T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flood Control I<br>therefore, the D<br>the Project 452<br>compliance wit                                                                                                                                                                                                                                                                                                                      | rans' facilities<br>District (Distr<br>District shall b<br>Storm Drain.<br>h the mass-ba                                                                                                                                                                                 | d to the Line and the City ict) owns and e jointly responded ased WLAs for at the storn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I Storm Drain<br>of Long Beac<br>operates the<br>onsible for act<br>WLAs are ap<br>or sediment win<br>drain outfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | as it convey<br>th. The Los<br>Project 452;<br>hieving the Verplied as ann<br>ill be determ<br>to the lago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ys stormwater Angeles Coun Storm Drain; WLAs assigne hual limits and hined by pollut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Constituent                                                                                                                                                                                                                                                                                                                                                                                   | Project 452                                                                                                                                                                                                                                                              | Line I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Termino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Line K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Line M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chlordane                                                                                                                                                                                                                                                                                                                                                                                     | 5.67                                                                                                                                                                                                                                                                     | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                      | 0.23                                                                                                                                                                                                                                                                     | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lead                                                                                                                                                                                                                                                                                                                                                                                          | 529,607.42                                                                                                                                                                                                                                                               | 378,284.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,260,963.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201,748.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75,684.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                          | 1,701,094.50                                                                                                                                                                                                                                                             | 1,215,046.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,050,203.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 648,014.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 243,098.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Concentration-l                                                                                                                                                                                                                                                                                                                                                                               | based WLAs g Beach, Los                                                                                                                                                                                                                                                  | for sediment a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | are assigned to<br>nty Flood Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntrol District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t, and Caltrans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T 1                                                                                                                                                                                                                                                                                                                                                                                           | compliance with concentrations  Constituent  Chlordane Dieldrin Lead Zinc PAHs PCBs DDT  Concentration-base  Concentration-the City of Lon Concentration-                                                                                                                | the Project 452 Storm Drain. compliance with the mass-ba concentrations in the sedime    Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the Project 452 Storm Drain. Mass-based compliance with the mass-based WLAs for concentrations in the sediment at the storm    Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the Project 452 Storm Drain. Mass-based WLAs are ap compliance with the mass-based WLAs for sediment with concentrations in the sediment at the storm drain outfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the Project 452 Storm Drain. Mass-based WLAs are applied as and compliance with the mass-based WLAs for sediment will be determ concentrations in the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor outfalls to the lagor tensor of the sediment at the storm drain outfalls to the lagor tensor outfalls to the | Constituent         Project 452         Line I         Termino Ave Ave Ave         Line K         Line M           Chlordane         5.67         4.05         13.50         2.16         0.81           Dieldrin         0.23         0.16         0.54         0.09         0.03           Lead         529,607.42         378,284.43         1,260,963.47         201,748.62         75,684.54           Zinc         1,701,094.50         1,215,046.35         4,050,203.85         648,014.85         243,098.10           PAHs         45,612.01         32,579.44         108,599.47         17,375.44         6,518.27           PCBs         257.43         183.88         612.93         98.07         36.79           DDT         17.92         12.80         42.66         6.83         2.56    Concentration-based WLAs for sediment are assigned to MS4 permittees including the City of Long Beach, Los Angeles County Flood Control District, and Caltrans Concentration-based WLAs for sediment are applied as average monthly limits. |

| <b>TMDL Element</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Regulatory Provis</b>                                                                  | sions                                                       |                                                      |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--|--|--|
|                     | pollutant concentrations in the sediment at the individual storm drain outfalls and in the lagoon at points in the West Arm, North Arm, and Central Arm that represent the cumulative inputs from the MS4 drainage system to the lagoon.  Concentration-based interim WLAs for sediment are set to allow time for removal of contaminated sediment through proposed implementation actions. Interim WLAs are based on the 95 <sup>th</sup> percentile value of sediment data collected from 2000 to 2008. The |                                                                                           |                                                             |                                                      |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                             |                                                      |  |  |  |
|                     | use of 95 <sup>th</sup> percentile values NPDES permitting methodol numeric target, the interim li will be included in MS4 perr requirements.                                                                                                                                                                                                                                                                                                                                                                 | to develop interim li<br>logy. If the 95 <sup>th</sup> perc<br>mit is equal to the fi     | imits is consistent ventile is equal to on an WLAs. Interim | with current<br>r lower than the<br>n and final WLAs |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Concentration                                                                             | n-based WLAs                                                |                                                      |  |  |  |
|                     | Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interim WLAs<br>(ug/dry kg)                                                               | Final WLAs<br>(ug/dry kg)                                   |                                                      |  |  |  |
|                     | Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129.65                                                                                    | 0.50                                                        |                                                      |  |  |  |
|                     | Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.20                                                                                     | 0.02                                                        |                                                      |  |  |  |
|                     | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399,500.00                                                                                | 46,700.00                                                   |                                                      |  |  |  |
|                     | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 565,000.00                                                                                | 150,000.00                                                  |                                                      |  |  |  |
|                     | PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,022.00                                                                                  | 4,022.00                                                    |                                                      |  |  |  |
|                     | PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.90                                                                                     | 22.7                                                        |                                                      |  |  |  |
|                     | DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149.80                                                                                    | 1.58                                                        |                                                      |  |  |  |
|                     | Waste Load Allocations for Ot  Concentration-based waste le other stormwater, and non-st or enrollees under a general stormwater permit or general concentration-based waste le                                                                                                                                                                                                                                                                                                                               | oad allocations are a<br>ormwater permittee<br>non-stormwater NPI<br>I construction permi | s. Any future mino<br>DES permit, genera                    | or NPDES permits al industrial                       |  |  |  |
|                     | Constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | Load Allocation<br>(ug/dry kg)                              |                                                      |  |  |  |
|                     | Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | 0.50                                                        |                                                      |  |  |  |
|                     | Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           | 0.02                                                        |                                                      |  |  |  |
|                     | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | 46,700.00                                                   |                                                      |  |  |  |
|                     | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | 150,000.00                                                  |                                                      |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                             |                                                      |  |  |  |
|                     | PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | 4,022.00                                                    |                                                      |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           | 4,022.00<br>22.70<br>1.58                                   |                                                      |  |  |  |



| TMDL Element                                         | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| <b>Load Allocations</b>                              | of direct atmosphowithin the waterslarea. The load all                                                                                                                                                                                                                                                                                                                                                                      | eric deposition was dened, which is approxi | ped for direct atmospheric deperture of the percent at the percent | area of surface water total watershed |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Constituent                                 | Load Allocation (mg/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Chlordane                                   | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                     |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Dieldrin                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                     |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead                                        | 33,217.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                     |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | Zinc                                        | 106,694.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | PAHs                                        | 2,860.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | PCBs                                        | 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | DDT                                         | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |  |  |  |
|                                                      | and sediment to protect human health, and the selection of ERLs as numeric targets for sediment, which are the most protective of the potentially applicable sediment guidelines available.  Additionally, to address sources of uncertainty in the analysis, particularly the assumption of natural removal of contaminated sediment at the northern arm of the lagoon, an explicit 10% margin of safety is also included. |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
| Seasonal<br>Variations and<br>Critical<br>Conditions | sediment or tissue<br>OC pesticides, PC                                                                                                                                                                                                                                                                                                                                                                                     | e data. Given that all                      | lity (wet vs. dry season) wa<br>ocations for this TMDL are es<br>is concentrations in sediment, a<br>mality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xpressed in terms of                  |  |  |  |
|                                                      | Because the adverse effects of OC pesticides, PCBs, PAHs, and metals are related to sediment accumulation and bioaccumulation in the food chain over long periods of time short term variations in concentrations are less likely to cause significant impacts upon beneficial uses.                                                                                                                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
| Monitoring Plan                                      | The Colorado Lagoon TMDL Monitoring Plan (CLTMP) is designed to monitor evaluate implementation of this TMDL, and refine the understanding of current sloadings. The goals of the CLTMP are:                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
|                                                      | To determine compliance with OC pesticides, PCBs, metals, and PAHs waste load and load allocations,                                                                                                                                                                                                                                                                                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | nentation actions proposed by I Long Beach on water and sedin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                                   |  |  |  |
|                                                      | the Lagoon and de                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | els in the Lagoon especially in implementation action such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |  |  |  |

| TMDL Element | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | To implement the CLTMP in a manner consistent with other TMDL implementation plans and regulatory actions within the Colorado Lagoon watershed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I |
|              | Monitoring shall begin six months after the monitoring plan is approved by the Executive Officer. Water column and sediment samples will be collected at the outlet of the storm drains discharging to the lagoon, while water column, sediment, and fish tissue samples will be collected in the West Arm, Central Arm, North Arm, and at the outlet of the lagoon to Marine Stadium. The City of Long Beach, the Los Angeles County Flood Control District, and Caltrans are jointly responsible for conducting water, sediment, and fish tissue monitoring.                                                                                     | 1 |
|              | Water quality samples and total suspended solids samples shall be collected quarterly and analyzed for chlordane, dieldrin, OC pesticides, and total PCBs at detection limits that are at or below the minimum levels. The minimum levels are those published by the State Water Resources Control Board in Appendix 4 of the Policy for the Implementation of Toxic Standards for Inland Surface Water, Enclosed Bays, and Estuaries of California, 2005.                                                                                                                                                                                         |   |
|              | Water quality samples shall also be collected quarterly and analyzed for general water quality constituents (GWQC), total recoverable and dissolved PAHs, lead, and zinc. Total suspended solid samples shall also be collected to analyze for PAHs, lead, and zinc. For metal analysis, methods that allow for (1) the removal of salt matrix to reduce interference and avoid inaccurate results prior to the analysis; and (2) the use of trace metal clean sampling techniques, must be applied. Examples of such methods include EPA Method 1669 for sample collection and handling, and EPA Method 1640 for sample preparation and analysis. | A |
|              | Sediment samples will be collected annually for analysis of general sediment quality constituents (GSQC), OC pesticides, PCBs, PAHs, and metals. Lead, zinc, chlordane, dieldrin, and total PCBs shall be analyzed at detection limits that are lower than the ERLs. The sediment toxicity testing shall include testing a minimum of three species for lethal and non-lethal endpoints. Toxicity testing may include: the 28-day and 10-day amphipod mortality test, the sea urchin fertilization testing using sediment pore water, and the bivalve embryo testing of the sediment/water interface. The chronic 28-day and shorter-              | I |
|              | term 10-day amphipod tests may be conducted in the first year of quarterly testing. If there is no significant difference in the tests, then the less expensive 10-day test can be used throughout the rest of the monitoring, with some periodic 28-day tests. Initial sediment toxicity monitoring should be conducted quarterly in the first year after the effective date of the TMDL to define the baseline and annually thereafter to provide sufficient data over the implementation timeframe to evaluate changes in sediment quality due to implementation actions.                                                                       | V |
|              | Fish tissue samples will be collected annually and analyzed for chlordane, dieldrin, DDT, and PCBs to assess changes in concentrations of target organic constituents. The same rationale used for establishing sampling frequency for sediments is used to establish fish tissue sample collection frequency. For Colorado Lagoon, species with the potential for human and wildlife consumption will be targeted. Fish targeted to evaluate potential                                                                                                                                                                                            | E |

| TMDL Element           | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | impacts to human health will be limited to species more commonly consumed by humans. Tissues analyzed will be based on the most appropriate and common preparation for the selected fish species.  Monitoring reports shall be prepared and submitted to the Regional Board annually within six months after the completion of the final sampling event of the year. All compliance monitoring must be conducted in conjunction with a Regional Board approved Quality Assurance Project Plan (QAPP). The QAPP shall include protocols for sample collection, standard analytical procedures, and laboratory certification.                                                                                                |
| Implementation<br>Plan | The City of Long Beach, Los Angeles County Flood Control District, and California Department of Transportation (Caltrans) are jointly responsible for meeting the waste load allocations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | Compliance with the TMDL is determined based on the assigned WLAs. NPDES permits will be amended to be consistent with the assumptions and requirements of the WLAs. Responsible jurisdictions are required to implement the proposed actions to remove contaminated sediment; control the discharges of pollutants in urban runoff, stormwater and contaminated sediments to Colorado Lagoon; attain water, fish tissue, and sediment quality standards; and protect beneficial uses. Table 7-30.2 contains a schedule for responsible jurisdictions to implement BMPs and proposed implementation actions to comply with the TMDL.                                                                                       |
|                        | Responsible jurisdictions may employ a variety of implementation strategies such as non-structural and structural best management practices (BMPs) to meet the required waste load allocations. The implementation actions described in this section represent a range of activities that are proposed by the Los Angeles County Flood Control District and City of Long Beach in the Los Angeles County Termino Avenue Drain Project and Colorado Lagoon Restoration Project, respectively.                                                                                                                                                                                                                               |
|                        | Implementation and Determination of Compliance with the WLAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | The WLAs will apply to all NPDES dischargers in the Colorado Lagoon watershed. The regulatory mechanisms used to implement the TMDL include the Los Angeles County MS4 permit, the City of Long Beach MS4 permit, the Caltrans stormwater permit, and any future general industrial stormwater permits, general construction stormwater permits, minor NPDES permits, and general NPDES permits as well as any other appropriate regulatory mechanism, including Board orders, where required. Each NPDES permit may be reopened immediately after the TMDL becomes effective, or amended at re-issuance, in accordance with applicable laws, to incorporate the waste load allocations and other provisions of this TMDL. |
|                        | Compliance with the WLAs will be measured at the storm drain outlets and in the lagoon and will be achieved through BMPs and a combination of proposed implementation actions provided in the Proposed Implementation section below to remove contaminated sediment and reduce loadings of contaminated sediment through the control of stormwater and contaminated sediments to Colorado Lagoon.                                                                                                                                                                                                                                                                                                                          |
|                        | The final WLAs will be included for permitted MS4 discharges and other NPDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| TMDL Element | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | discharges in accordance with the compliance schedules provided in Table 7-30.2. The Regional Board may revise these WLAs based on additional information developed through monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 |
|              | The WLAs for the minor NPDES permits and general non-stormwater NPDES permits will be implemented through effluent limitations consistent with the assumptions and requirements of the WLAs. Permit writers for the non-stormwater permits may translate applicable waste load allocations into effluent limitations for the minor and general NPDES permits by applying applicable engineering practices.                                                                                                                                                                                                                                                                | F |
|              | Proposed Implementation Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|              | Non-Structural Best Management Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|              | The non-structural BMPs are based on the premise that specific land uses or critical sources can be targeted to achieve the TMDL waste load allocations. Available non-structural BMPs include better sediment control at construction sites and improved street cleaning by upgrading to vacuum type sweepers, storm drain cleaning, and public education and out reach. The lagoon is also impacted by irrigation runoff from the golf course located adjacent to the lagoon in the dry season. Improvements to the golf course operation should also be considered to protect lagoon resources by reducing watering needs and eliminating pesticide and herbicide use. |   |
|              | Site-Specific Implementation Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A |
|              | Relocation of the Termino Avenue Drain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|              | One of the major system outfalls, the Termino Avenue Drain, has been proposed by the Los Angeles County Flood Control District to be modified, which will no longer discharge into the Lagoon. As proposed in the Los Angeles County Flood Control District Termino Avenue Drain Project (TADP) the drain would bypass the Lagoon and discharge stormwater flows into Marine Stadium. Dry weather flows will be diverted into the sanitary sewer system. This project would also redirect flows from three other storm drains located on the south shore of the Lagoon that currently discharge into the Lagoon.                                                          |   |
|              | Low Flow Diversion and Trash Separation Device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|              | The City of Long Beach proposed in the Colorado Lagoon Restoration Project to divert low storm drain flows from other three major storm drain system outfalls and install trash separation devices to trap trash and debris prior to entering the wet well for the diverted runoff. The Colorado Lagoon Restoration Project would redirect or treat low flows from these drains to minimize contamination to water and sediment.                                                                                                                                                                                                                                          |   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F |

| TMDL Element | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Vegetated Bioswale Installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | The flows from the remaining four local storm drains would be treated via a vegetated bioswale as proposed in the Colorado Lagoon Restoration Project. A bioswale would also be developed on the north shore between the Lagoon and Recreation Park Golf Course. The vegetated bioswale would treat stormwater and dry weather runoff through filtration to remove sediment and pollutants prior to discharging into the Lagoon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Clean Culvert, Repair Tidal Gates, and Remove Sill/Structural Impedances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | The Colorado Lagoon is connected to Alamitos Bay and the Pacific Ocean through an underground tidal culvert to Marine Stadium. The existing culvert has not been cleaned since it was built in the 1960s. The flow in the culvert is impeded by sediment that has accumulated on the bottom, extensive marine growth that has accumulated on the sides and ceiling, and debris that is trapped within the trash racks on the tide gate screens at both ends of the culvert. These existing conditions limit the Lagoon's tidal range and tidal flushing, which results in increased degradation of water quality. As proposed in the Colorado Lagoon Restoration Project, the City of Long Beach plans to clean the existing culvert and trash racks, repair the tidal gates, and remove the sill and structural impedances within and around the existing culvert. Implementation of this component of the Colorado Lagoon Restoration Project would result in increased tidal range, tidal flushing, and water circulation, and improvement of water and sediment quality. |
|              | Remove Contaminated Sediment in the Western Arm of the Lagoon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | OC pesticides, PCBs, PAHs, and metals were deposited over time from the particulates in the runoff brought to the Lagoon through the existing storm drains. It is estimated that the layer of contaminated sediment reaches 4 to 5 ft deep. The City of Long Beach proposes to remove sediment to a depth of 6 ft to provide a safeguard that only clean sediment remains. The excavation depth gradually decreases toward the footbridge. This component of the Colorado Lagoon Restoration Project would remove approximately 16,000 cubic yards (cy) of contaminated sediment within the western arm of the Lagoon.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Remove Contaminated Sediment in the Central Lagoon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Similar to the sediment removal project above, the Colorado Lagoon Restoration Project would remove sediment and sand that has eroded and been deposited into the Lagoon over years, and create a larger subtidal area. Approximately 5,500 cy of sediment would be removed from the central Lagoon. Sediment removal from the central area of the lagoon would create a channel through the center of the central Lagoon to connect the dredge areas in the western arm to the outlet at the existing culvert or proposed open channel. Removal of this sediment would also provide additional space for water circulation and tidal flushing.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | As proposed in the Colorado Lagoon Restoration Project, only the Western Arm and the Central Lagoon are planned to be dredged based on the recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| TMDL Element | Regulatory Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              | from the Sediment Testing and Disposal Report. The TMDL monitoring program will determine if additional implementation actions such as dredging in the Northern Arm will be required to remove contaminated sediment in the Lagoon.  Build Alternate Channel or Underground Culvert between Lagoon and Marine Stadium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T |
|              | City is considering an open channel or parallel underground culvert option to further improve water quality at the Colorado Lagoon. However, this project was not included in the certified EIR. This proposed project consists of replacing the existing concrete box culvert with an open channel or new underground culvert that would run from the Lagoon through Marina Vista Park to Marine Stadium in a location generally parallel to the existing culvert. Creating an open channel or underground culvert would improve tidal flushing by an increase in the tidal range, and result in a corresponding improvement of water and sediment quality. In addition, it would provide improved flood flow conveyance.  Implementation of the proposed actions should result in attainment of the TMDL allocations. If the proposed actions are not implemented or otherwise do not result in | N |
|              | attainment of allocations, additional implementation actions shall be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A |



Table 7-30.2 Colorado Lagoon OC Pesticides, PCBs, Sediment Toxicity, PAHs, and Metals TMDL: Implementation Schedule

| Item | Implementation Action                                        | Responsible Party              | Date                    |
|------|--------------------------------------------------------------|--------------------------------|-------------------------|
| 1    | Effective date of interim waste load allocations (WLAs).     | The City of Long Beach, the    | Effective date of the   |
|      |                                                              | Los Angeles County Flood       | TMDL                    |
|      |                                                              | Control District, and Caltrans | _                       |
| 2    | Responsible jurisdictions shall submit a monitoring plan to  | The City of Long Beach, the    | 6 months after          |
|      | the Los Angeles Regional Board for Executive Officer         | Los Angeles County Flood       | effective date of the   |
|      | approval.                                                    | Control District, and Caltrans | TMDL                    |
| 3    | Responsible jurisdictions shall begin monitoring as          | The City of Long Beach, the    | 6 months after          |
|      | outlined in the approved monitoring plan.                    | Los Angeles County Flood       | monitoring plan 🖳       |
|      |                                                              | Control District, and Caltrans | approved by E.O.        |
| 4    | Responsible jurisdictions shall submit annual reports to the | The City of Long Beach, the    | 15 months after         |
|      | Los Angeles Regional Board for review.                       | Los Angeles County Flood       | monitoring starts and   |
|      |                                                              | Control District, and Caltrans | annually thereafter 7   |
| 5    | Responsible jurisdictions shall submit bi-annual progress    | The City of Long Beach, the    | Every 2 years after     |
|      | reports to provide updates on the status of implementation   | Los Angeles County Flood       | effective date of the   |
|      | actions performed under the TMDL. The plan shall contain     | Control District, and Caltrans | TMDL                    |
|      | mechanisms for demonstrating progress toward meeting the     |                                |                         |
|      | assigned WLAs.                                               |                                |                         |
| 6    | Responsible jurisdictions shall achieve WLAs.                | The City of Long Beach, the    | 7 years after effective |
|      |                                                              | Los Angeles County Flood       | date of the TMDL        |
|      |                                                              | Control District, and Caltrans |                         |









